Zero Modes and the Atiyah-Singer Index in Noncommutative Instantons

نویسندگان

  • Keun-Young Kim
  • Hyun Seok Yang
چکیده

We study the bosonic and fermionic zero modes in noncommutative instanton backgrounds based on the ADHM construction. In k instanton background in U(N) gauge theory, we show how to explicitly construct 4Nk (2Nk) bosonic (fermionic) zero modes in the adjoint representation and 2k (k) bosonic (fermionic) zero modes in the fundamental representation from the ADHM construction. The number of fermionic zero modes is also shown to be exactly equal to the Atiyah-Singer index of the Dirac operator in the noncommutative instanton background. We point out that (super)conformal zero modes in non-BPS instantons are affected by the noncommutativity. The role of Lorentz symmetry breaking by the noncommutativity is also briefly discussed to figure out the structure of U(1) instantons. PACS numbers: 11.15.-q, 11.15.Tk, 02.40.Gh February 1, 2008 [email protected] [email protected] [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zero-Modes and Atiyah-Singer Index in Noncommutative Instantons

We study the bosonic and fermionic zero-modes in noncommutative instanton backgrounds based on the ADHM construction. In k instanton background in U(N) gauge theory, we show how to explicitly construct 4Nk (2Nk) bosonic (fermionic) zero-modes in the adjoint representation and 2k (k) bosonic (fermionic) zero-modes in the fundamental representation from the ADHM construction. The number of fermio...

متن کامل

- Patodi - Singer Index Theorem ∗

In [Wu], the noncommutative Atiyah-Patodi-Singer index theorem was proved. In this paper, we extend this theorem to the equivariant case.

متن کامل

When Are Zero Modes Necessary ?

In this paper we develop a way to count zero momentum modes in front-form quantization and apply it to several such approaches: canonical light-cone quantization; Dirac light-cone quantization; reduced phase space quantization ; and Penrose quantization. We also examine which of these light-cone methods are consistent with the Atiyah-Singer index theorem.

متن کامل

The Atiyah-Singer Index Formula for Subelliptic Operators on Contact Manifolds, Part I

The Atiyah-Singer index theorem gives a topological formula for the index of an elliptic differential operator. The topological index depends on a cohomology class that is constructed from the principal symbol of the operator. On contact manifolds, the important Fredholm operators are not elliptic, but hypoelliptic. Their symbolic calculus is noncommutative, and is closely related to analysis o...

متن کامل

Instantons on Noncommutative R and Projection Operators

I carefully study noncommutative version of ADHM construction of instantons, which was proposed by Nekrasov and Schwarz. Noncommutative R is described as algebra of operators acting in Fock space. In ADHM construction of instantons, one looks for zeromodes of Dirac-like operator. The feature peculiar to noncommutative case is that these zero-modes project out some states in Fock space. The mech...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008